NuSol - Numerical solver for the 3D stationary nuclear Schrödinger equation
نویسندگان
چکیده
The classification of short hydrogen bonds depends on several factors including the shape and energy spacing between the nuclear eigenstates of the hydrogen. Here, we describe the NuSol program in which three classes of algorithms were implemented to solve the 1D, 2D and 3D time independent nuclear Schrödinger equation. The Schrödinger equation was solved using the finite differences based Numerov’smethodwhichwas extended to higher dimensions, themore accurate pseudo-spectral Chebyshev collocation method and the sinc discrete variable representation by Colbert and Miller. NuSol can be applied to solve the Schrödinger equation for arbitrary analytical or numerical potentials with focus on nuclei bound by the potential of their molecular environment. We validated themethods against literature values for the 2DHenon–Heiles potential, the 3D linearly coupled sextic oscillators and applied them to study hydrogen bonding in the malonaldehyde derivate 4-cyano2,2,6,6-tetramethyl-3,5-heptanedione. With NuSol, the extent of nuclear delocalization in a given molecular potential can directly be calculated without relying on linear reaction coordinates in 3D molecular space.
منابع مشابه
Numerical solution for one-dimensional independent of time Schrödinger Equation
In this paper, one of the numerical solution method of one- particle, one dimensional timeindependentSchrodinger equation are presented that allows one to obtain accurate bound state eigenvalues and functions for an arbitrary potential energy function V(x).For each case, we draw eigen functions versus the related reduced variable for the correspondingenergies. The paper ended with a comparison ...
متن کاملInvestigation of analytical and numerical solutions for one-dimensional independent-oftime Schrödinger Equation
In this paper, the numerical solution methods of one- particale, one – dimensional time- independentSchrodinger equation are presented that allows one to obtain accurate bound state eigen values andeigen functions for an arbitrary potential energy function V(x). These methods included the FEM(Finite Element Method), Cooly, Numerov and others. Here we considered the Numerov method inmore details...
متن کاملAnalytical Soliton Solutions Modeling of Nonlinear Schrödinger Equation with the Dual Power Law Nonlinearity
Introduction In this study, we use a newly proposed method based on the software structure of the maple, called the Khaters method, and will be introducing exponential, hyperbolic, and trigonometric solutions for one of the Schrödinger equations, called the nonlinear Schrödinger equation with the dual power law nonlinearity. Given the widespread use of the Schrödinger equation in physics and e...
متن کاملNumerical Solutions of the Schrödinger Equation
for the energy eigenvalues En and the associated energy eigenfunctions (stationary states) Ψn. There are a number of important cases for which the stationary Schrödinger equation can be solved analytically, e.g., the harmonic oscillator (in any number of dimensions) and the hydrogen atom. However, in most cases of practical interest (in, e.g., atomic, molecular, and solid-state physics) exact o...
متن کاملGPELab, a Matlab toolbox to solve Gross-Pitaevskii equations I: Computation of stationary solutions
This paper presents GPELab (Gross-Pitaevskii Equation Laboratory), an advanced easy-to-use and flexible Matlab toolbox for numerically simulating many complex physics situations related to Bose-Einstein condensation. The model equation that GPELab solves is the Gross-Pitaevskii equation. The aim of this first part is to present the physical problems and the robust and accurate numerical schemes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer Physics Communications
دوره 198 شماره
صفحات -
تاریخ انتشار 2016